We study the effects of polymer additives on turbulence generated by the ubiquitous Rayleigh-Taylor instability. Numerical simulations of complete viscoelastic models provide clear evidence that the heat transport is enhanced up to 50% with respect to the Newtonian case. This phenomenon is accompanied by a speed-up of the mixing layer growth. We give a phenomenological interpretation of these results based on small-scale turbulent reduction induced by polymers.

Polymer Heat Transport Enhancement in Thermal Convection: The Case of Rayleigh-Taylor Turbulence

MAZZINO, ANDREA;
2010-01-01

Abstract

We study the effects of polymer additives on turbulence generated by the ubiquitous Rayleigh-Taylor instability. Numerical simulations of complete viscoelastic models provide clear evidence that the heat transport is enhanced up to 50% with respect to the Newtonian case. This phenomenon is accompanied by a speed-up of the mixing layer growth. We give a phenomenological interpretation of these results based on small-scale turbulent reduction induced by polymers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/284633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact