In this paper we describe how an idea centered on the concept of self-saturation allows several improvements in the computation of Gröbner bases via Buchberger’s Algorithm. In a nutshell, the idea is to extend the advantages of computing with homogeneous polynomials or vectors to the general case. When the input data are not homogeneous, we use as a main tool the procedure of a self-saturating Buchberger’s Algorithm. Another strictly related topic is treated later when a mathematical foundation is given to the sugar trick which is nowadays widely used in most of the implementations of Buchberger’s Algorithm. A special emphasis is also given to the case of a single grading, and subsequently some timings and indicators showing the practical merits of our approach.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Computing Inhomogeneous Groebner Bases |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Abstract: | In this paper we describe how an idea centered on the concept of self-saturation allows several improvements in the computation of Gröbner bases via Buchberger’s Algorithm. In a nutshell, the idea is to extend the advantages of computing with homogeneous polynomials or vectors to the general case. When the input data are not homogeneous, we use as a main tool the procedure of a self-saturating Buchberger’s Algorithm. Another strictly related topic is treated later when a mathematical foundation is given to the sugar trick which is nowadays widely used in most of the implementations of Buchberger’s Algorithm. A special emphasis is also given to the case of a single grading, and subsequently some timings and indicators showing the practical merits of our approach. |
Handle: | http://hdl.handle.net/11567/282662 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |