In the framework of supervised learning we prove that the iterative algorithm introduced in Umanità and Villa (2010) allows to estimate in a consistent way the relevant features of the regression function under the a priori assumption that it admits a sparse representation.
A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization.
DE VITO, ERNESTO;VILLA, SILVIA;UMANITA', VERONICA
2011-01-01
Abstract
In the framework of supervised learning we prove that the iterative algorithm introduced in Umanità and Villa (2010) allows to estimate in a consistent way the relevant features of the regression function under the a priori assumption that it admits a sparse representation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.