In this paper we study a family of gradient descent algorithms to approximate the regression function from reproducing kernel Hilbert spaces (RKHSs), the family being characterized by a polynomial decreasing rate of step sizes (or learning rate). By solving a bias-variance trade-off we obtain an early stopping rule and some probabilistic upper bounds for the convergence of the algorithms. We also discuss the implication of these results in the context of classification where some fast convergence rates can be achieved for plug-in classifiers. Some connections are addressed with Boosting, Landweber iterations, and the online learning algorithms as stochastic approximations of the gradient descent method.

On Early Stopping in Gradient Descent Learning

ROSASCO, LORENZO;
2007-01-01

Abstract

In this paper we study a family of gradient descent algorithms to approximate the regression function from reproducing kernel Hilbert spaces (RKHSs), the family being characterized by a polynomial decreasing rate of step sizes (or learning rate). By solving a bias-variance trade-off we obtain an early stopping rule and some probabilistic upper bounds for the convergence of the algorithms. We also discuss the implication of these results in the context of classification where some fast convergence rates can be achieved for plug-in classifiers. Some connections are addressed with Boosting, Landweber iterations, and the online learning algorithms as stochastic approximations of the gradient descent method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/276887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 707
  • ???jsp.display-item.citation.isi??? 594
social impact