Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, microscopy and astronomy. For the removal of this kind of noise we consider an approach based on a constrained optimization problem, with an objective function describing TV and other edge-preserving regularizations of the Kullback-Leibler divergence. We introduce a new discrepancy principle for the choice of the regularization parameter, which is justified by the statistical properties of the Poisson noise. For solving the optimization problem we propose a particular form of a general scaled gradient projection (SGP) method, recently introduced for image deblurring. We derive the form of the scaling from a decomposition of the gradient of the regularization functional into a positive and a negative part. The beneficial effect of the scaling is proved by means of numerical simulations, showing that the performance of the proposed form of SGP is superior to that of the most efficient gradient projection methods. An extended numerical analysis of the dependence of the solution on the regularization parameter is also performed to test the effectiveness of the proposed discrepancy principle.

Efficient gradient projection methods for edge-preserving removal of Poisson noise

BOCCACCI, PATRIZIA;BERTERO, MARIO
2009-01-01

Abstract

Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, microscopy and astronomy. For the removal of this kind of noise we consider an approach based on a constrained optimization problem, with an objective function describing TV and other edge-preserving regularizations of the Kullback-Leibler divergence. We introduce a new discrepancy principle for the choice of the regularization parameter, which is justified by the statistical properties of the Poisson noise. For solving the optimization problem we propose a particular form of a general scaled gradient projection (SGP) method, recently introduced for image deblurring. We derive the form of the scaling from a decomposition of the gradient of the regularization functional into a positive and a negative part. The beneficial effect of the scaling is proved by means of numerical simulations, showing that the performance of the proposed form of SGP is superior to that of the most efficient gradient projection methods. An extended numerical analysis of the dependence of the solution on the regularization parameter is also performed to test the effectiveness of the proposed discrepancy principle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/264412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact