The inhibition of cell proliferation by 1,4-bis(1-naphthyl)-2,3-dinitro-1,3-butadiene (Naph-DNB) was evaluated in vitro against 4 cell lines (L1210/DDP, A2780/DX3, HCT-8/FU7dR, A549-T12) selected for their resistance to cisplatin, doxorubicin, 5-fluorouracil and taxol, and their wild-type counterparts. Naph-DNB is a novel anti-cancer compound obtained years ago within a research project of Organic Chemistry aimed at synthesizing 2,3-dinitrobutadiene derivatives. Because of its chemical structure, NaphDNB was suggested to interact with nucleic acids, in particular DNA, and the other cellular macromolecules. This hypothesis made us consider Naph-DNB as a candidate for studies concerning its antitumour activity. We used the MTT assay to test the inhibition of cell proliferation after incubation of the cell lines with Naph-DNB for 72 h. For comparison, resistant and wild-type cell lines were also tested against those anticancer drugs used in vitro for their selection. In these culture conditions Naph-DNB retained its inhibiting activity against all resistant cells with IC values similar to those obtained in corresponding wild-type cell lines. Moreover, Naph-DNB was twice as effective as 5-fluorouracil against wild-type HCT-8 cells. Our previous findings about the interaction of Naph-DNB with DNA through the formation of interstrand cross-links suggested a mechanism of action similar to that of platinum/alkylating agents or topoisomerase inhibitors (intercalating agents). Our present data obtained by the K-SDS precipitation assay in A2780 and A549 cells showed that Naph-DNB is not able to form a stable topoisomerase-DNA complex as is the case for topoisomerase inhibitors. In conclusion, our results indicate that Naph-DNB is able to overcome some of the classical mechanisms of resistance selected by some anticancer drugs mainly used in clinical setting.

1,4-bis(1-naphtyl)-2,3-dinitro-1,3 butadiene a novel anticancer compound effective against tumor cell lines characterized by different mechanisms of resistance.

NOVI, MARINO;DELL'ERBA, CARLO;BARBIERI, FEDERICA;MACCAGNO, MASSIMO;
2004-01-01

Abstract

The inhibition of cell proliferation by 1,4-bis(1-naphthyl)-2,3-dinitro-1,3-butadiene (Naph-DNB) was evaluated in vitro against 4 cell lines (L1210/DDP, A2780/DX3, HCT-8/FU7dR, A549-T12) selected for their resistance to cisplatin, doxorubicin, 5-fluorouracil and taxol, and their wild-type counterparts. Naph-DNB is a novel anti-cancer compound obtained years ago within a research project of Organic Chemistry aimed at synthesizing 2,3-dinitrobutadiene derivatives. Because of its chemical structure, NaphDNB was suggested to interact with nucleic acids, in particular DNA, and the other cellular macromolecules. This hypothesis made us consider Naph-DNB as a candidate for studies concerning its antitumour activity. We used the MTT assay to test the inhibition of cell proliferation after incubation of the cell lines with Naph-DNB for 72 h. For comparison, resistant and wild-type cell lines were also tested against those anticancer drugs used in vitro for their selection. In these culture conditions Naph-DNB retained its inhibiting activity against all resistant cells with IC values similar to those obtained in corresponding wild-type cell lines. Moreover, Naph-DNB was twice as effective as 5-fluorouracil against wild-type HCT-8 cells. Our previous findings about the interaction of Naph-DNB with DNA through the formation of interstrand cross-links suggested a mechanism of action similar to that of platinum/alkylating agents or topoisomerase inhibitors (intercalating agents). Our present data obtained by the K-SDS precipitation assay in A2780 and A549 cells showed that Naph-DNB is not able to form a stable topoisomerase-DNA complex as is the case for topoisomerase inhibitors. In conclusion, our results indicate that Naph-DNB is able to overcome some of the classical mechanisms of resistance selected by some anticancer drugs mainly used in clinical setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/258226
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact