The aim of the present study was to verify that the patient/ventilator interaction is similar, regardless of the mode of assisted mechanical ventilation (i.e. pressure- or volume-limited) used, if tidal volume (VT) and peak inspiratory flow (PIF) are matched. Therefore, the authors compared the effects of three different modes of assisted ventilation on the work of breathing (WOB) and gas exchange in patients with acute respiratory failure. For Protocol 1, in seven patients, the authors compared pressure support, assist pressure control and assist control (with square and decelerating wave inspiratory flow pattern) set to deliver the same VT and PIF. For Protocol 2, in another 10 patients, the authors compared pressure support and assist control with high (0.8 L x s(-1)) and low (0.6 L x s(-1)) PIFs set to deliver the same VT. In Protocol 1, there was no difference in WOB and gas exchange between the three modes of assisted ventilation tested. In Protocol 2, the decrease of PIFs during assist control significantly increased WOB. In conclusion, different modes of assisted ventilation similarly reduce work of breathing and provide adequate gas exchange at fixed tidal volume and peak inspiratory flow only. During assist control, tidal volume and peak inspiratory flow (set by the physician) are the main determinants of the patient/ventilator interaction.
Different modes of assisted ventilation in patients with acute respiratory failure.
PELOSI, PAOLO PASQUALINO;
2002-01-01
Abstract
The aim of the present study was to verify that the patient/ventilator interaction is similar, regardless of the mode of assisted mechanical ventilation (i.e. pressure- or volume-limited) used, if tidal volume (VT) and peak inspiratory flow (PIF) are matched. Therefore, the authors compared the effects of three different modes of assisted ventilation on the work of breathing (WOB) and gas exchange in patients with acute respiratory failure. For Protocol 1, in seven patients, the authors compared pressure support, assist pressure control and assist control (with square and decelerating wave inspiratory flow pattern) set to deliver the same VT and PIF. For Protocol 2, in another 10 patients, the authors compared pressure support and assist control with high (0.8 L x s(-1)) and low (0.6 L x s(-1)) PIFs set to deliver the same VT. In Protocol 1, there was no difference in WOB and gas exchange between the three modes of assisted ventilation tested. In Protocol 2, the decrease of PIFs during assist control significantly increased WOB. In conclusion, different modes of assisted ventilation similarly reduce work of breathing and provide adequate gas exchange at fixed tidal volume and peak inspiratory flow only. During assist control, tidal volume and peak inspiratory flow (set by the physician) are the main determinants of the patient/ventilator interaction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.