We address the problem of representing and processing 3D objects, described through simplicial meshes, which consist of parts of mixed dimensions, and with a non-manifold topology, at different levels of detail. First, we describe a multi-resolution model, that we call a non-manifold multi-tessellation (NMT), and we consider the selective refinement query, which is at the heart of several analysis operations on multi-resolution meshes. Next, we focus on a specific instance of a NMT, generated by simplifying simplicial meshes based on vertex-pair contraction, and we describe a compact data structure for encoding such a model. We also propose a new data structure for two-dimensional simplicial meshes, capable of representing both connectivity and adjacency information with a small memory overhead, which is used to describe the mesh extracted from an NMT through selective refinement. Finally, we present algorithms to efficiently perform updates on such a data structure.
A multi-resolution topological representation for non-manifold meshes
DE FLORIANI, LEILA;MAGILLO, PAOLA;PUPPO, ENRICO;
2004-01-01
Abstract
We address the problem of representing and processing 3D objects, described through simplicial meshes, which consist of parts of mixed dimensions, and with a non-manifold topology, at different levels of detail. First, we describe a multi-resolution model, that we call a non-manifold multi-tessellation (NMT), and we consider the selective refinement query, which is at the heart of several analysis operations on multi-resolution meshes. Next, we focus on a specific instance of a NMT, generated by simplifying simplicial meshes based on vertex-pair contraction, and we describe a compact data structure for encoding such a model. We also propose a new data structure for two-dimensional simplicial meshes, capable of representing both connectivity and adjacency information with a small memory overhead, which is used to describe the mesh extracted from an NMT through selective refinement. Finally, we present algorithms to efficiently perform updates on such a data structure.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.