The ground-state geometries, electronic energies and vibrational properties of carboxylic complexes of iron were investigated both in vacuo and under the effect of a reaction field, to determine thermodynamic properties of iron–acetates and the role of the carboxylic functional on the isotopic imprinting of this metal in metalorganic complexation. The electronic energy, zero-point corrections and thermal corrections of these substances at variational state were investigated at the DFT/B3LYP level of theory with different basis set expansions and the effect of the reaction field on the variational structures was investigated through the Polarized Continuun Model. Thermochemical cycle calculations, combined with solvation energy calculations and appropriate scaling from absolute to conventional properties allowed to compute the Gibbs free energy of formation from the elements of the investigated aqueous species and to select the best procedure to be applied in the successive vibrational analysis. The best compliance with the few existing thermodynamic data for these substances was obtained by coupling the gas phase calculations at DFT/B3LYP level with the [6-31G(d,p)]–[6-31G+(d,p)] (for cations and neutral molecules – anions; respectively) with solvation calculations adopting atomic radii optimized for the HF/6-31G(d) level of theory (UAHF). A vibrational analysis conducted on 54Fe, 56Fe, 57Fe and 58Fe gaseous isotopomers yielded reduced partition function ratios which increased not only with the nominal valence of the central cation, as expected, but, more importantly, with the extent of the complexation operated by the organic functional. Coupling thermodynamic data with separative effects it was shown that this last is controlled, as expected, by the relative bond strength of the complex in both aggregation states. Through the Integral Equation Formalism of the Polarized Continuum Model (IEFPCM) the effect of the ionic strength of the solution and of a T-dependent permittivity on the energy and separative effects of the solvated metalorganic complexes were analyzed in detail. The solvent effect in the standard state (hypothetical one-molal solution referred to infinite dilution; T = 298.15 K, P = 1 bar) is a limited reduction of the separative effects of all the isotopomeric couples. With an increase in T (and the concomitant decrease in the dielectric constant of the solvent) this effect diminishes progressively.

The iron-isotope fractionation dictated by the carboxylic functional: An ab-initio investigation

OTTONELLO, GIULIO ARMANDO;VETUSCHI ZUCCOLINI, MARINO
2008-01-01

Abstract

The ground-state geometries, electronic energies and vibrational properties of carboxylic complexes of iron were investigated both in vacuo and under the effect of a reaction field, to determine thermodynamic properties of iron–acetates and the role of the carboxylic functional on the isotopic imprinting of this metal in metalorganic complexation. The electronic energy, zero-point corrections and thermal corrections of these substances at variational state were investigated at the DFT/B3LYP level of theory with different basis set expansions and the effect of the reaction field on the variational structures was investigated through the Polarized Continuun Model. Thermochemical cycle calculations, combined with solvation energy calculations and appropriate scaling from absolute to conventional properties allowed to compute the Gibbs free energy of formation from the elements of the investigated aqueous species and to select the best procedure to be applied in the successive vibrational analysis. The best compliance with the few existing thermodynamic data for these substances was obtained by coupling the gas phase calculations at DFT/B3LYP level with the [6-31G(d,p)]–[6-31G+(d,p)] (for cations and neutral molecules – anions; respectively) with solvation calculations adopting atomic radii optimized for the HF/6-31G(d) level of theory (UAHF). A vibrational analysis conducted on 54Fe, 56Fe, 57Fe and 58Fe gaseous isotopomers yielded reduced partition function ratios which increased not only with the nominal valence of the central cation, as expected, but, more importantly, with the extent of the complexation operated by the organic functional. Coupling thermodynamic data with separative effects it was shown that this last is controlled, as expected, by the relative bond strength of the complex in both aggregation states. Through the Integral Equation Formalism of the Polarized Continuum Model (IEFPCM) the effect of the ionic strength of the solution and of a T-dependent permittivity on the energy and separative effects of the solvated metalorganic complexes were analyzed in detail. The solvent effect in the standard state (hypothetical one-molal solution referred to infinite dilution; T = 298.15 K, P = 1 bar) is a limited reduction of the separative effects of all the isotopomeric couples. With an increase in T (and the concomitant decrease in the dielectric constant of the solvent) this effect diminishes progressively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/249624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact