Prostaglandins are important molecules involved in inflammation and immunomodulation. The rate-limiting step in the synthesis of these potent mediators is the expression of the enzyme cyclooxygenase (COX). The isoform responsible, COX-2, is encoded by an immediate-early gene induced by various pro-inflammatory agents in macrophages. Selective blockade of COX-2 by the use of an antisense strategy would overcome the undesirable side effects of conventional inhibitors. Here we describe cellular internalization and activity of a novel class of oligonucleotide analogues named peptide nucleic acids (PNAs) as inhibitors of COX-2 translation. In particular, we designed two antisense murine COX-2 PNA molecules, directed against a mRNA region spanning the AUG translation-initiation codon and a homopurinic sequence inside the COX-2 mRNA reading frame. These two PNA sequences, used separately or mixed together, demonstrated the capacity to inhibit the translation of murine COX-2 enzyme in a cell-free translation model using a rabbit retculocyte lysate model. Since PNAs display very low natural permeability across lipids bilayers, the two molecules were also re-synthesized, modified to be used in intact cells by means of linkage to a hydrophobic peptide to obtain membrane-diffusable PNA chimaerae. Finally, stimulated macrophages were found to be affected strongly by these two compounds, used separately or together, monitoring inhibition of COX-2 synthesis by Western blot analysis of total lysates and enzymic activity via radioactive assay on the microsomal fractions.

Selective inhibition of inducible cyclo-oxygenase-2 expression by antisense peptide nucleic acids in intact murine macrophages.

SCARFI', SONIA;GIOVINE, MARCO;MILLO, ENRICO;POZZOLINI, MARINA;STURLA, LAURA;BENATTI, UMBERTO;DAMONTE, GIANLUCA
2003-01-01

Abstract

Prostaglandins are important molecules involved in inflammation and immunomodulation. The rate-limiting step in the synthesis of these potent mediators is the expression of the enzyme cyclooxygenase (COX). The isoform responsible, COX-2, is encoded by an immediate-early gene induced by various pro-inflammatory agents in macrophages. Selective blockade of COX-2 by the use of an antisense strategy would overcome the undesirable side effects of conventional inhibitors. Here we describe cellular internalization and activity of a novel class of oligonucleotide analogues named peptide nucleic acids (PNAs) as inhibitors of COX-2 translation. In particular, we designed two antisense murine COX-2 PNA molecules, directed against a mRNA region spanning the AUG translation-initiation codon and a homopurinic sequence inside the COX-2 mRNA reading frame. These two PNA sequences, used separately or mixed together, demonstrated the capacity to inhibit the translation of murine COX-2 enzyme in a cell-free translation model using a rabbit retculocyte lysate model. Since PNAs display very low natural permeability across lipids bilayers, the two molecules were also re-synthesized, modified to be used in intact cells by means of linkage to a hydrophobic peptide to obtain membrane-diffusable PNA chimaerae. Finally, stimulated macrophages were found to be affected strongly by these two compounds, used separately or together, monitoring inhibition of COX-2 synthesis by Western blot analysis of total lysates and enzymic activity via radioactive assay on the microsomal fractions.
File in questo prodotto:
File Dimensione Formato  
Scarfi et al Biotechnol. Appl. Biochem. 2003.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 194.33 kB
Formato Adobe PDF
194.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/246908
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact