We address the problem of computing ideals of polynomials which vanish at a finite set of points. In particular we develop a modular Buchberger-Moeller algorithm, best suited for the computation over QQ, and study its complexity; then we describe a variant for the computation of ideals of projective points, which uses a direct approach and a new stopping criterion. The described algorithms are implemented in cocoa, and we report some experimental timings.

Computing Ideals of Points

ABBOTT, JOHN ANTHONY;BIGATTI, ANNA MARIA;ROBBIANO, LORENZO
2000

Abstract

We address the problem of computing ideals of polynomials which vanish at a finite set of points. In particular we develop a modular Buchberger-Moeller algorithm, best suited for the computation over QQ, and study its complexity; then we describe a variant for the computation of ideals of projective points, which uses a direct approach and a new stopping criterion. The described algorithms are implemented in cocoa, and we report some experimental timings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/246678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 40
social impact