A finite element method of solving the mass and energy-conserving lubrication problem, including the energy balance in the feed grooves, is proposed. As mass continuity in the whole film is considered, cavitation is taken into account properly. Both a two-dimensional (2D) and a quasi-three-dimensional (3D) solution of the energy equation in the lubricant film have been adopted. Some results are presented for a two-axial groove journal bearing. The quasi-3D solution method (cross-film conduction included in the model) showed good agreement with experimental results and incurred low computational cost.
THD Analysis of Journal Bearings: a Finite Element Algorithm for Groove Mixing Conditions
STEFANI, FABRIZIO
2005-01-01
Abstract
A finite element method of solving the mass and energy-conserving lubrication problem, including the energy balance in the feed grooves, is proposed. As mass continuity in the whole film is considered, cavitation is taken into account properly. Both a two-dimensional (2D) and a quasi-three-dimensional (3D) solution of the energy equation in the lubricant film have been adopted. Some results are presented for a two-axial groove journal bearing. The quasi-3D solution method (cross-film conduction included in the model) showed good agreement with experimental results and incurred low computational cost.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.