The ion irradiation of the Rh(110) surface results in the self-organised formation of various nano-structured morphologies like ripples, mounds, pyramids which have been thoroughly studied as a function of the incidence angle and of the impact energy of the impinging ions. A study of the evolution of the surface ripples at various impact energies above the hot-spot threshold, has been rationalized in terms of a contribution due to an ion-induced surface diffusion mechanism. In the very low ion incidence regime, where the formation of hot spots following ion impact is inhibited, the formation of a rhomboidal pyramid pattern is singled out and attributed to the predominant reorganization of surface adatom and vacancies produced in the topmost surface layers. The metastable rhomboidal pyramid pattern, was recently proven to have extraordinary chemical reactivity since it is endowed with a very high density of undercoordinated step sites runnin along the very open <1-12> azimuthal direction.
Nanostructuring Rh(110) Surfaces by Ion Etching
TOMA, ANDREA;BORAGNO, CORRADO;VALBUSA, UGO;BUATIER DE MONGEOT, FRANCESCO
2007-01-01
Abstract
The ion irradiation of the Rh(110) surface results in the self-organised formation of various nano-structured morphologies like ripples, mounds, pyramids which have been thoroughly studied as a function of the incidence angle and of the impact energy of the impinging ions. A study of the evolution of the surface ripples at various impact energies above the hot-spot threshold, has been rationalized in terms of a contribution due to an ion-induced surface diffusion mechanism. In the very low ion incidence regime, where the formation of hot spots following ion impact is inhibited, the formation of a rhomboidal pyramid pattern is singled out and attributed to the predominant reorganization of surface adatom and vacancies produced in the topmost surface layers. The metastable rhomboidal pyramid pattern, was recently proven to have extraordinary chemical reactivity since it is endowed with a very high density of undercoordinated step sites runnin along the very open <1-12> azimuthal direction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.