This chapter addresses the design of a robot eye featuring the mechanics and motion characteristics of a human one. In particular the goal is to provide guidelines for the implementation of a tendon driven robot capable to emulate saccadic motions. In the first part of this chapter the physiological and mechanical characteristics of the eyeplant1 in humans and primates will be reviewed. Then, the fundamental motion strategies used by humans during saccadic motions will be discussed, and the mathematical formulation of the relevant Listing’s Law and Half-Angle Rule, which specify the geometric and kinematic characteristics of ocular saccadic motions, will be introduced.

Design of a Humanoid Robot Eye

CANNATA, GIORGIO;
2007-01-01

Abstract

This chapter addresses the design of a robot eye featuring the mechanics and motion characteristics of a human one. In particular the goal is to provide guidelines for the implementation of a tendon driven robot capable to emulate saccadic motions. In the first part of this chapter the physiological and mechanical characteristics of the eyeplant1 in humans and primates will be reviewed. Then, the fundamental motion strategies used by humans during saccadic motions will be discussed, and the mathematical formulation of the relevant Listing’s Law and Half-Angle Rule, which specify the geometric and kinematic characteristics of ocular saccadic motions, will be introduced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/233613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact