We prove hypercontractivity for a quantum Ornstein-Uhlenbeck semigroup on the entire algebra B(h) of bounded operators on a separable Hilbert space h. We exploit the particular structure of the spectrum together with hypercontractivity of the corresponding birth and death process and a proper decomposition of the domain. Then we deduce that the semigroup verifies a logarithmic Sobolev inequality and gain an elementary estimate of the best constant.

Hypercontractivity for a Quantum Ornstein-Uhlenbeck Semigroup

SASSO, EMANUELA
2008-01-01

Abstract

We prove hypercontractivity for a quantum Ornstein-Uhlenbeck semigroup on the entire algebra B(h) of bounded operators on a separable Hilbert space h. We exploit the particular structure of the spectrum together with hypercontractivity of the corresponding birth and death process and a proper decomposition of the domain. Then we deduce that the semigroup verifies a logarithmic Sobolev inequality and gain an elementary estimate of the best constant.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/230182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact