Let $X$ be a complex submanifold of dimension $d$ of $\mathbb P^m\times\mathbb P^n$ ($m\geq n\geq 2$) and denote by $\alpha\colon\Pic(\mathbb P^m\times\mathbb P^n)\to \Pic(X)$ the restriction map of Picard groups, by $N_{X|\mathbb P^m\times\mathbb P^n}$ the normal bundle of $X$ in $\mathbb P^m\times\mathbb P^n$. Set $t:=\max\{\dim\pi_1(X),\dim\pi_2(X)\}$, where $\pi_1$ and $\pi_2$ are the two projections of $\mathbb P^m\times\mathbb P^n$. We prove a Barth-Lefschetz type result as follows: {\em Theorem.} {\it If $d\geq \frac{m+n+t+1}{2}$ then $X$ is algebraically simply connected, the map $\alpha$ is injective and $\Coker(\alpha)$ is torsion-free. Moreover $\alpha$ is an isomorphism if $d\geq\frac{m+n+t+2}{2}$, or if $d=\frac{m+n+t+1}{2}$ and $N_{X|\mathbb P^m\times\mathbb P^n}$ is decomposable.} These bounds are optimal. The main technical ingredients in the proof are: the Kodaira-Le Potier vanishing theorem in the generalized form of Sommese (\cite{LP}, \cite{ShS}), the join construction and an algebraisation result of Faltings concerning small codimensional subvarieties in $\mathbb P^N$ (see \cite{Fa}).

A Barth-Lefschetz theorem for submanifolds of a product of projective spaces

BADESCU, LUCIAN SILVESTRU;
2009-01-01

Abstract

Let $X$ be a complex submanifold of dimension $d$ of $\mathbb P^m\times\mathbb P^n$ ($m\geq n\geq 2$) and denote by $\alpha\colon\Pic(\mathbb P^m\times\mathbb P^n)\to \Pic(X)$ the restriction map of Picard groups, by $N_{X|\mathbb P^m\times\mathbb P^n}$ the normal bundle of $X$ in $\mathbb P^m\times\mathbb P^n$. Set $t:=\max\{\dim\pi_1(X),\dim\pi_2(X)\}$, where $\pi_1$ and $\pi_2$ are the two projections of $\mathbb P^m\times\mathbb P^n$. We prove a Barth-Lefschetz type result as follows: {\em Theorem.} {\it If $d\geq \frac{m+n+t+1}{2}$ then $X$ is algebraically simply connected, the map $\alpha$ is injective and $\Coker(\alpha)$ is torsion-free. Moreover $\alpha$ is an isomorphism if $d\geq\frac{m+n+t+2}{2}$, or if $d=\frac{m+n+t+1}{2}$ and $N_{X|\mathbb P^m\times\mathbb P^n}$ is decomposable.} These bounds are optimal. The main technical ingredients in the proof are: the Kodaira-Le Potier vanishing theorem in the generalized form of Sommese (\cite{LP}, \cite{ShS}), the join construction and an algebraisation result of Faltings concerning small codimensional subvarieties in $\mathbb P^N$ (see \cite{Fa}).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/229923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact