The classical Linnik-Sprindzuk phenomenon shows that the Riemann Hypothesis for Dirichlet L-functions is equivalent to the Riemann Hypothesis plus a suitable property of the vertical distribution of the zeros of the Riemann zeta function. We prove a different form of such a phenomenon (in the general framework of the Selberg class), relating certain properties of the zeros of the twists of an L-function to other properties of the zeros of the L-function itself.

On the Linnik-Sprindzuk theorem about the zeros of L-functions

PERELLI, ALBERTO
2008-01-01

Abstract

The classical Linnik-Sprindzuk phenomenon shows that the Riemann Hypothesis for Dirichlet L-functions is equivalent to the Riemann Hypothesis plus a suitable property of the vertical distribution of the zeros of the Riemann zeta function. We prove a different form of such a phenomenon (in the general framework of the Selberg class), relating certain properties of the zeros of the twists of an L-function to other properties of the zeros of the L-function itself.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/223882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact