We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the re producing kernel. Moreover, for p = 2 we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel, extending Mercer theorem.

Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem

CARMELI, CLAUDIO;DE VITO, ERNESTO;TOIGO, ALESSANDRO
2006-01-01

Abstract

We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the re producing kernel. Moreover, for p = 2 we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel, extending Mercer theorem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/221241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 116
social impact