The aim of this study is to promote better cooling of the photovoltaic facade working on its typical geometrical arrangement. This consists of an alternation of photovoltaic cells (localized heat sources) and semitransparent window panes (unheated zones). Fundamentally, the flow of natural convection that develops within the vertical channel appears to be subjected to boundary-localized thermally active areas and adiabatic areas, evenly distributed throughout the height. This requires investigations of parametric variations of magnitude and space frequency of the heated areas as well as intermediate spacing. Two complementary experimental apparatuses were developed, namely, at CETHIL and at the CFD Research Laboratory UNSW in collaboration with the DIPTEM. Experiments were conducted on both.
Natural Convection in Nonuniformly Heated Channel: application To Photovoltaic Facades
FOSSA, MARCO;
2009-01-01
Abstract
The aim of this study is to promote better cooling of the photovoltaic facade working on its typical geometrical arrangement. This consists of an alternation of photovoltaic cells (localized heat sources) and semitransparent window panes (unheated zones). Fundamentally, the flow of natural convection that develops within the vertical channel appears to be subjected to boundary-localized thermally active areas and adiabatic areas, evenly distributed throughout the height. This requires investigations of parametric variations of magnitude and space frequency of the heated areas as well as intermediate spacing. Two complementary experimental apparatuses were developed, namely, at CETHIL and at the CFD Research Laboratory UNSW in collaboration with the DIPTEM. Experiments were conducted on both.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.