he receptor-like phosphotyrosine phosphatase eta (PTPeta) is an important intracellular effector of the cytostatic action of SST. Here we characterize, in Chinese hamster ovary-k1 cells, the intracellular pathway that from somatostatin receptor 1 (SSTR1), leads to the activation of PTPeta and that involves, in a multimeric complex and sequential activation, the tyrosine kinases Janus kinase (JAK) 2 and Src, and the cytosolic phosphotyrosine phosphatase SHP-2. We show that inhibitors of JAK2 and Src and dominant-negative mutants of SHP-2 and Src abolished the SSTR1-mediated PTPeta activation, suggesting that all these effectors participate in the activation of PTPeta. In basal conditions, JAK2 forms a multimeric complex with SHP-2, Src and PTPeta. In response to SST, JAK2 is activated in a G protein-dependent manner, dissociates from and phosphorylates SHP-2, increasing its activity. Subsequently, SHP-2 dissociates from Src, dephosphorylates the Src inhibitory tyrosine-529, and causes an autocatalytical increase of the phosphorylation of Src tyrosine 418, located inside its kinase activation loop. Active Src, in turn, controls the activity of PTPeta, via a direct interaction and phosphorylation of the phosphatase. These data for the first time depict an intracellular pathway involving a precise sequence of interactions and cross-activation among tyrosine phosphatases and kinases acting upstream of PTPeta. In particular the sequential activation of JAK2, SHP-2, and Src conveys the molecular signaling from SSTR1 to the activation of this phosphatase that is responsible for the final biological effects of SST.

An intracellular multi-effector complex mediates somatostatin receptor 1 regulation of phospho-tyrosine phosphatase eta activity

PATTAROZZI, ALESSANDRA;FLORIO, TULLIO
2007-01-01

Abstract

he receptor-like phosphotyrosine phosphatase eta (PTPeta) is an important intracellular effector of the cytostatic action of SST. Here we characterize, in Chinese hamster ovary-k1 cells, the intracellular pathway that from somatostatin receptor 1 (SSTR1), leads to the activation of PTPeta and that involves, in a multimeric complex and sequential activation, the tyrosine kinases Janus kinase (JAK) 2 and Src, and the cytosolic phosphotyrosine phosphatase SHP-2. We show that inhibitors of JAK2 and Src and dominant-negative mutants of SHP-2 and Src abolished the SSTR1-mediated PTPeta activation, suggesting that all these effectors participate in the activation of PTPeta. In basal conditions, JAK2 forms a multimeric complex with SHP-2, Src and PTPeta. In response to SST, JAK2 is activated in a G protein-dependent manner, dissociates from and phosphorylates SHP-2, increasing its activity. Subsequently, SHP-2 dissociates from Src, dephosphorylates the Src inhibitory tyrosine-529, and causes an autocatalytical increase of the phosphorylation of Src tyrosine 418, located inside its kinase activation loop. Active Src, in turn, controls the activity of PTPeta, via a direct interaction and phosphorylation of the phosphatase. These data for the first time depict an intracellular pathway involving a precise sequence of interactions and cross-activation among tyrosine phosphatases and kinases acting upstream of PTPeta. In particular the sequential activation of JAK2, SHP-2, and Src conveys the molecular signaling from SSTR1 to the activation of this phosphatase that is responsible for the final biological effects of SST.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/216207
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact