Complex projective surfaces (i.e. complex surfaces endowed with a holomorphic global section of the anticanonical bundle) play a major role in theory of algebraically completely integrable systems. In this paper we study the case of complex projective Poisson surfaces. We prove a classification theorem and count how many independent Poisson structures there are on a given Poisson projective surface.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Classification of Poisson surfaces |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | Complex projective surfaces (i.e. complex surfaces endowed with a holomorphic global section of the anticanonical bundle) play a major role in theory of algebraically completely integrable systems. In this paper we study the case of complex projective Poisson surfaces. We prove a classification theorem and count how many independent Poisson structures there are on a given Poisson projective surface. |
Handle: | http://hdl.handle.net/11567/210069 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.