Complex projective surfaces (i.e. complex surfaces endowed with a holomorphic global section of the anticanonical bundle) play a major role in theory of algebraically completely integrable systems. In this paper we study the case of complex projective Poisson surfaces. We prove a classification theorem and count how many independent Poisson structures there are on a given Poisson projective surface.

Classification of Poisson surfaces

BARTOCCI, CLAUDIO;
2005-01-01

Abstract

Complex projective surfaces (i.e. complex surfaces endowed with a holomorphic global section of the anticanonical bundle) play a major role in theory of algebraically completely integrable systems. In this paper we study the case of complex projective Poisson surfaces. We prove a classification theorem and count how many independent Poisson structures there are on a given Poisson projective surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/210069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact