When n3, the action of the conformal group O(1,n+1) on Rn∪{∞} may be characterized in simple differential geometric terms, even locally: a theorem of Liouville states that a C4 map between domains U and V in Rn whose differential is a (variable) multiple of a (variable) isometry at each point of U is the restriction to U of a transfor- mation x→g·x, for some g in O(1,n+1). In this paper, we consider the problem of char- acterizing the action of a more general semisimple Lie group G on the space G/P, where P is a minimal parabolic subgroup.

Contact and conformal mappings in parabolic geometry. I

DE MARI CASARETO DAL VERME F.;
2005

Abstract

When n3, the action of the conformal group O(1,n+1) on Rn∪{∞} may be characterized in simple differential geometric terms, even locally: a theorem of Liouville states that a C4 map between domains U and V in Rn whose differential is a (variable) multiple of a (variable) isometry at each point of U is the restriction to U of a transfor- mation x→g·x, for some g in O(1,n+1). In this paper, we consider the problem of char- acterizing the action of a more general semisimple Lie group G on the space G/P, where P is a minimal parabolic subgroup.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/209797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact