Purpose: The authors evaluated the ability of a confocal scanning laser ophthalmoscope to detect glaucomatous visual field loss by using their previously described discriminant formula on a prospectively obtained cohort. The relationship of optic disc size to diagnostic classification was also evaluated. Methods: One eye was chosen randomly from each of 153 subjects. Sixty control eyes had intraocular pressure less than 21 mmHg and normal visual fields; 93 glaucomatous eyes had intraocular pressure greater than 21 mmHg and abnormal visual fields. The optic disc status purposely was not used for classification purposes. All subjects were examined with the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering GMBH, Heidelberg, Germany) and Humphrey Perimeter, program 30-2 (Humphrey Instruments, Inc., San Leandro, CA). Visual fields were considered abnormal by the authors' previously published criteria. The HRT classification used age, adjusted cup shape measure, rim volume, and height variation contour to classify the optic disc as normal or glaucomatous. Then the authors assessed the sensitivity, specificity, and diagnostic precision for the entire group, and for three subsets classified by disc area: disc area less than 2 mm2, between 2 and 3 mm2, and more than 3 mm2. Results: The entire group had a sensitivity, specificity, and diagnostic precision of 74%, 88%, and 80%, respectively. The specificity was 83% when disc area was less than 2 mm2 and improved to 89% when disc area was more than 2 mm2. The sensitivity tended to improve from 65% to 79%, and to 83% if the disc area increased, but the difference was not statistically significant. Conclusions: In a prospective cohort of patients, the HRT discriminant analysis formula was capable of detecting glaucomatous visual field loss with good precision. Unusually small optic discs continue to present diagnostic difficulties.

The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph

IESTER, MICHELE;
1997-01-01

Abstract

Purpose: The authors evaluated the ability of a confocal scanning laser ophthalmoscope to detect glaucomatous visual field loss by using their previously described discriminant formula on a prospectively obtained cohort. The relationship of optic disc size to diagnostic classification was also evaluated. Methods: One eye was chosen randomly from each of 153 subjects. Sixty control eyes had intraocular pressure less than 21 mmHg and normal visual fields; 93 glaucomatous eyes had intraocular pressure greater than 21 mmHg and abnormal visual fields. The optic disc status purposely was not used for classification purposes. All subjects were examined with the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering GMBH, Heidelberg, Germany) and Humphrey Perimeter, program 30-2 (Humphrey Instruments, Inc., San Leandro, CA). Visual fields were considered abnormal by the authors' previously published criteria. The HRT classification used age, adjusted cup shape measure, rim volume, and height variation contour to classify the optic disc as normal or glaucomatous. Then the authors assessed the sensitivity, specificity, and diagnostic precision for the entire group, and for three subsets classified by disc area: disc area less than 2 mm2, between 2 and 3 mm2, and more than 3 mm2. Results: The entire group had a sensitivity, specificity, and diagnostic precision of 74%, 88%, and 80%, respectively. The specificity was 83% when disc area was less than 2 mm2 and improved to 89% when disc area was more than 2 mm2. The sensitivity tended to improve from 65% to 79%, and to 83% if the disc area increased, but the difference was not statistically significant. Conclusions: In a prospective cohort of patients, the HRT discriminant analysis formula was capable of detecting glaucomatous visual field loss with good precision. Unusually small optic discs continue to present diagnostic difficulties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/197107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 158
  • ???jsp.display-item.citation.isi??? 110
social impact