O-2 adsorption on Ag(001) at 100 K has been investigated by HREELS. Contrary to previous reports we could resolve 4 oxygen related peaks, 3 of which are due to the internal stretching vibration as confirmed by isotope labelling. The lowest frequency mode at 63 meV is assigned to molecular oxygen chemisorbed at defect sites. The further two features are very close to each other in frequency, at 79 and 84 meV. We assign them to molecules chemisorbed in a peroxidic state in two different adsorption sites. Initially both sites are filled simultaneously while at higher coverage adsorption in the higher frequency site is favoured.

O2 adsorption on Ag(001) at 100 K has been investigated by HREELS. Contrary to previous reports we could resolve 4 oxygen related peaks, 3 of which are due to the internal stretching vibration as confirmed by isotope labelling. The lowest frequency mode at 63 meV is assigned to molecular oxygen chemisorbed at defect sites. The further two features are very close to each other in frequency, at 79 and 84 meV. We assign them to molecules chemisorbed in a peroxidic state in two different adsorption sites. Initially both sites are filled simultaneously while at higher coverage adsorption in the higher frequency site is favoured.

HREELS study of O2 molecular chemisorption on Ag(001)

VATTUONE, LUCA;VALBUSA, UGO;ROCCA, MARIO AGOSTINO
1997-01-01

Abstract

O2 adsorption on Ag(001) at 100 K has been investigated by HREELS. Contrary to previous reports we could resolve 4 oxygen related peaks, 3 of which are due to the internal stretching vibration as confirmed by isotope labelling. The lowest frequency mode at 63 meV is assigned to molecular oxygen chemisorbed at defect sites. The further two features are very close to each other in frequency, at 79 and 84 meV. We assign them to molecules chemisorbed in a peroxidic state in two different adsorption sites. Initially both sites are filled simultaneously while at higher coverage adsorption in the higher frequency site is favoured.
1997
O-2 adsorption on Ag(001) at 100 K has been investigated by HREELS. Contrary to previous reports we could resolve 4 oxygen related peaks, 3 of which are due to the internal stretching vibration as confirmed by isotope labelling. The lowest frequency mode at 63 meV is assigned to molecular oxygen chemisorbed at defect sites. The further two features are very close to each other in frequency, at 79 and 84 meV. We assign them to molecules chemisorbed in a peroxidic state in two different adsorption sites. Initially both sites are filled simultaneously while at higher coverage adsorption in the higher frequency site is favoured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/195000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact