A simple model that simulates a single biomass particle devolatilization is described. The model takes into account the main physical and chemical factors influencing the phenomenon at high temperatures (>700 K), where the production of gaseous components far outweighs that of liquids. The predictions of the model are shown to be in good agreement with published data. The model is then applied to the devolatilization of biomass in a fluidized bed, in which attention is focused on heat transfer, particle mixing and elutriation, and gas production. Predictions on the overall devolatilization time for a biomass particle are compared with experimental results obtained in a fluidized bed reactor in which the process was monitored by continuous measurement of the bed pressure. Good correspondence of predicted with calculated values was obtained, supporting the validity of the many approximations made in the derivation of the governing relationships for the pyrolysis process.

Modelling of biomass devolatilisation in a fluidised bed reactor

DI FELICE, RENZO;
1999-01-01

Abstract

A simple model that simulates a single biomass particle devolatilization is described. The model takes into account the main physical and chemical factors influencing the phenomenon at high temperatures (>700 K), where the production of gaseous components far outweighs that of liquids. The predictions of the model are shown to be in good agreement with published data. The model is then applied to the devolatilization of biomass in a fluidized bed, in which attention is focused on heat transfer, particle mixing and elutriation, and gas production. Predictions on the overall devolatilization time for a biomass particle are compared with experimental results obtained in a fluidized bed reactor in which the process was monitored by continuous measurement of the bed pressure. Good correspondence of predicted with calculated values was obtained, supporting the validity of the many approximations made in the derivation of the governing relationships for the pyrolysis process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/192443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact