Assume the Riemann Hypothesis and let $F(X,T)=4\sum\limits_{0<\gamma_1,\gamma_2\leq T}\frac{X^{i(\gamma_1-\gamma_2)}}{4+(\gamma_1-\gamma_2)^2}$, where $\gamma_j$, $j=1,2$, run over the imaginary part of the non-trivial zeros of the Riemann zeta-function, be the Montgomery's pair correlation function. Goldston-Montgomery proved, for any $\epsilon>0$, that $ F(X,T) \sim \frac{1}{2\pi} T\log T$ uniformly for $X^\epsilon \leq T\leq X$ is equivalent to $J(X,H) \sim HX\log \frac{X}{H} \ \text{uniformly for} \ 1\leq H \leq X^{1-\epsilon}$ where $J(X,H)$ is Selberg's integral. Here we prove, for any $\epsilon>0$, that $ F(X,T) \sim \frac{1}{2\pi} T\log T$ uniformly for $X^{1/2+\epsilon}\leq T\leq X$ is equivalent to a suitable asymptotic formula for the truncated mean-square of exponential sums over primes.

Pair correlation of zeros, primes in short intervals and exponential sums over primes

PERELLI, ALBERTO
2000-01-01

Abstract

Assume the Riemann Hypothesis and let $F(X,T)=4\sum\limits_{0<\gamma_1,\gamma_2\leq T}\frac{X^{i(\gamma_1-\gamma_2)}}{4+(\gamma_1-\gamma_2)^2}$, where $\gamma_j$, $j=1,2$, run over the imaginary part of the non-trivial zeros of the Riemann zeta-function, be the Montgomery's pair correlation function. Goldston-Montgomery proved, for any $\epsilon>0$, that $ F(X,T) \sim \frac{1}{2\pi} T\log T$ uniformly for $X^\epsilon \leq T\leq X$ is equivalent to $J(X,H) \sim HX\log \frac{X}{H} \ \text{uniformly for} \ 1\leq H \leq X^{1-\epsilon}$ where $J(X,H)$ is Selberg's integral. Here we prove, for any $\epsilon>0$, that $ F(X,T) \sim \frac{1}{2\pi} T\log T$ uniformly for $X^{1/2+\epsilon}\leq T\leq X$ is equivalent to a suitable asymptotic formula for the truncated mean-square of exponential sums over primes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/190755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact