In earlier papers Tyrtyshnikov [42] and the first author [14] considered the analysis of clustering properties of the spectra of specific Toeplitz preconditioned matrices obtained by means of the best known matrix algebras. Here we generalize this technique to a generic Banach algebra of matrices by devising general preconditioners related to “convergent” approximation processes [36]. Finally, as case study, we focus our attention on the Tau preconditioning by showing how and why the best matrix algebra preconditioners for symmetric Toeplitz systems can be constructed in this class.

A unifying approach to abstract matrix algebra preconditioning

DI BENEDETTO, FABIO;
1999-01-01

Abstract

In earlier papers Tyrtyshnikov [42] and the first author [14] considered the analysis of clustering properties of the spectra of specific Toeplitz preconditioned matrices obtained by means of the best known matrix algebras. Here we generalize this technique to a generic Banach algebra of matrices by devising general preconditioners related to “convergent” approximation processes [36]. Finally, as case study, we focus our attention on the Tau preconditioning by showing how and why the best matrix algebra preconditioners for symmetric Toeplitz systems can be constructed in this class.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/188545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 46
social impact