Algebraic and computational properties of the rank-one updating of a generalized eigenvalue problem are investigated. The results are applied to the computation of the eigenvalues of full Toeplitz matrices related to the Laurent expansion of a rational function, extending a method of Handy and Barlow already known for the banded Toeplitz case.

Generalized updating problems and computation of the eigenvalues of rational Toeplitz matrices

DI BENEDETTO, FABIO
1997-01-01

Abstract

Algebraic and computational properties of the rank-one updating of a generalized eigenvalue problem are investigated. The results are applied to the computation of the eigenvalues of full Toeplitz matrices related to the Laurent expansion of a rational function, extending a method of Handy and Barlow already known for the banded Toeplitz case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/188543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact