We prove one divisibility relation of the anticyclotomic Iwasawa Main Conjecture for a higher weight ordinary modular form f and an imaginary quadratic field satisfying a "relaxed" Heegner hypothesis. Let Lambda be the anticyclotomic Iwasawa algebra. Following the approach of Howard and Longo-Vigni, we construct the Lambda-adic Kolyvagin system of generalized Heegner classes coming from Heegner points on a suitable Shimura curve. As its application, we also prove one divisibility relation in the Iwasawa-Greenberg main conjecture for the p-adic L-function defined by Magrone.

On the Iwasawa main conjecture for generalized Heegner classes in a quaternionic setting

Pati, Maria Rosaria
2024-01-01

Abstract

We prove one divisibility relation of the anticyclotomic Iwasawa Main Conjecture for a higher weight ordinary modular form f and an imaginary quadratic field satisfying a "relaxed" Heegner hypothesis. Let Lambda be the anticyclotomic Iwasawa algebra. Following the approach of Howard and Longo-Vigni, we construct the Lambda-adic Kolyvagin system of generalized Heegner classes coming from Heegner points on a suitable Shimura curve. As its application, we also prove one divisibility relation in the Iwasawa-Greenberg main conjecture for the p-adic L-function defined by Magrone.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1223226
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact