The venom contained within cnidarian nematocysts has a complex composition and holds significant potential for biotechnological applications. In this context, one of the most effective methods for studying nematocyst contents is the proteomic approach, which can detect even trace amounts of compounds while minimizing the need for large-scale animal collection, thus helping to preserve ecosystem integrity. This study aimed to provide a comprehensive proteomic and biochemical characterization of the crude nematocyst extract from the common hydrozoan Velella velella. Despite not being harmful to humans, the analysis of the crude venom extract from V. velella brought to the identification of 783 different proteins, categorized into structural components, enzymes, and potential toxins, revealing a qualitative composition of the venom similar to that of other more toxic cnidarians. Biochemical assays confirmed the presence of various active hydrolytic enzymes within the extract, including proteases, phospholipases, hyaluronidases, DNases, and chitinases. These findings pave the road for future studies involving the pharmacological applications of Velella velella venom components through recombinant production and functional testing.

Proteomic Analysis and Biochemical Characterization of the Nematocyst Extract of the Hydrozoan Velella velella

Eleonora Tassara;Gian Luigi Mariottini;Marco Giovine;Marina Pozzolini
2024-01-01

Abstract

The venom contained within cnidarian nematocysts has a complex composition and holds significant potential for biotechnological applications. In this context, one of the most effective methods for studying nematocyst contents is the proteomic approach, which can detect even trace amounts of compounds while minimizing the need for large-scale animal collection, thus helping to preserve ecosystem integrity. This study aimed to provide a comprehensive proteomic and biochemical characterization of the crude nematocyst extract from the common hydrozoan Velella velella. Despite not being harmful to humans, the analysis of the crude venom extract from V. velella brought to the identification of 783 different proteins, categorized into structural components, enzymes, and potential toxins, revealing a qualitative composition of the venom similar to that of other more toxic cnidarians. Biochemical assays confirmed the presence of various active hydrolytic enzymes within the extract, including proteases, phospholipases, hyaluronidases, DNases, and chitinases. These findings pave the road for future studies involving the pharmacological applications of Velella velella venom components through recombinant production and functional testing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1221856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact