The mass introduction of renewable energy sources (RESs) presents numerous challenges for transmission system operators (TSOs). The Italian TSO, Terna S.p.A., aims to assess the impact of inverter-based generation on system inertia, primary regulating energy and short-circuit power for the year 2030, characterized by a large penetration of these sources. The initial working point of the Italian transmission network has to be defined through load flow (LF) calculations before starting dynamical analyses and simulations of the power system. Terna 2030 development plan projections enable the estimation of active power generation and load for each hour of that year in each Italian market zone, as well as cross-zonal active power flows; this dataset differs from conventional LF assignments. Therefore, in order to set up a LF analysis for the characterization of the working point of the Italian transmission network, LF assignments have to be derived from the input dataset provided by Terna. For this purpose, this paper presents two methods for determining canonical LF assignments for each network bus, aligning with the available data. The methodologies are applied to a simplified model of the Italian network, but they are also valid for other transmission networks with similar topology and meet the future needs of TSOs. The methods are tested at selected hours, revealing that both approaches yield satisfactory results in terms of compliance with the hourly data provided.
Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks
Fresia M.;Minetti M.;Procopio R.;Bonfiglio A.;
2024-01-01
Abstract
The mass introduction of renewable energy sources (RESs) presents numerous challenges for transmission system operators (TSOs). The Italian TSO, Terna S.p.A., aims to assess the impact of inverter-based generation on system inertia, primary regulating energy and short-circuit power for the year 2030, characterized by a large penetration of these sources. The initial working point of the Italian transmission network has to be defined through load flow (LF) calculations before starting dynamical analyses and simulations of the power system. Terna 2030 development plan projections enable the estimation of active power generation and load for each hour of that year in each Italian market zone, as well as cross-zonal active power flows; this dataset differs from conventional LF assignments. Therefore, in order to set up a LF analysis for the characterization of the working point of the Italian transmission network, LF assignments have to be derived from the input dataset provided by Terna. For this purpose, this paper presents two methods for determining canonical LF assignments for each network bus, aligning with the available data. The methodologies are applied to a simplified model of the Italian network, but they are also valid for other transmission networks with similar topology and meet the future needs of TSOs. The methods are tested at selected hours, revealing that both approaches yield satisfactory results in terms of compliance with the hourly data provided.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.