: After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.

Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines

Michetti, Caterina;Benfenati, Fabio
2024-01-01

Abstract

: After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1218275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact