The processing of threat-related emotional body language (EBL) has been shown to engage sensorimotor cortical areas early on and induce freezing in the observers' motor system, particularly when observing fearful EBL. To provide insights into the interplay between somatosensory and motor areas during observation of EBL, here, we used high-density electroencephalography (hd-EEG) in healthy humans while they observed EBL stimuli involving fearful and neutral expressions. To capture early sensorimotor brain response, we focused on P100 fronto-central event-related potentials (ERPs) and event-related desynchronization/synchronization (ERD/ERS) in the mu-alpha (8-13 Hz) and lower beta (13-20 Hz) bands over the primary motor (M1) and somatosensory (S1) cortices. Source-level ERP and ERD/ERS analyses were conducted using eLORETA. Results revealed higher P100 amplitudes in motor and premotor channels for 'Neutral' compared with 'Fear'. Additionally, analysis of ERD/ERS showed increased beta band desynchronization in M1 for 'Neutral', and the opposite pattern in S1. Source-level estimation showed significant differences between conditions mainly observed in the beta band over sensorimotor areas. These findings provide high-temporal resolution evidence suggesting that seeing fearful EBL induces early activation of somatosensory areas, which in turn could suppress M1 activity. These findings highlight early dynamics within the observer's sensorimotor system and hint at a sensorimotor mechanism supporting freezing during the processing of EBL.By means of hd-EEG, we provide high-temporal resolution evidence that seeing fearful emotional body language (EBL) induces early activation of somatosensory areas, which in turn suppress M1 activity. These findings provide high-temporal resolution evidence suggesting that seeing fearful EBL induces early activation of somatosensory areas, which in turn could suppress M1 activity.
Early modulations of neural oscillations during the processing of emotional body language
Pelosin, Elisa;Bonassi, Gaia;Lagravinese, Giovanna;Avanzino, Laura
2024-01-01
Abstract
The processing of threat-related emotional body language (EBL) has been shown to engage sensorimotor cortical areas early on and induce freezing in the observers' motor system, particularly when observing fearful EBL. To provide insights into the interplay between somatosensory and motor areas during observation of EBL, here, we used high-density electroencephalography (hd-EEG) in healthy humans while they observed EBL stimuli involving fearful and neutral expressions. To capture early sensorimotor brain response, we focused on P100 fronto-central event-related potentials (ERPs) and event-related desynchronization/synchronization (ERD/ERS) in the mu-alpha (8-13 Hz) and lower beta (13-20 Hz) bands over the primary motor (M1) and somatosensory (S1) cortices. Source-level ERP and ERD/ERS analyses were conducted using eLORETA. Results revealed higher P100 amplitudes in motor and premotor channels for 'Neutral' compared with 'Fear'. Additionally, analysis of ERD/ERS showed increased beta band desynchronization in M1 for 'Neutral', and the opposite pattern in S1. Source-level estimation showed significant differences between conditions mainly observed in the beta band over sensorimotor areas. These findings provide high-temporal resolution evidence suggesting that seeing fearful EBL induces early activation of somatosensory areas, which in turn could suppress M1 activity. These findings highlight early dynamics within the observer's sensorimotor system and hint at a sensorimotor mechanism supporting freezing during the processing of EBL.By means of hd-EEG, we provide high-temporal resolution evidence that seeing fearful emotional body language (EBL) induces early activation of somatosensory areas, which in turn suppress M1 activity. These findings provide high-temporal resolution evidence suggesting that seeing fearful EBL induces early activation of somatosensory areas, which in turn could suppress M1 activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.