In this article, a machine-learning-based model for the regression of cloud-to-ground lightning location and peak current from time-domain waveforms of lightning-induced voltage measurements on overhead transmission lines is presented. A principal component analysis (PCA) procedure is applied for extracting significant features and decreasing the dimension of the input vector. Then, a shallow neural network is trained with the results of the PCA. The obtained results show that the proposed approach can be the base for a tool able to regress lighting location with an accuracy comparable to or even better than traditional methods [i.e., lightning location system (LLS)] and provide a peak current estimate more accurate than LLS and more actual and widespread than direct tower measurements (which are limited to a reduced number of recorded events in some specific regions). Such a tool would also have significant advantages in terms of costs, since it would not require a dedicated instrumentation.

Lightning Location and Peak Current Estimation From Lightning-Induced Voltages on Transmission Lines With a Machine Learning Approach

Nicora, Martino;Brignone, Massimo;Procopio, Renato
2024-01-01

Abstract

In this article, a machine-learning-based model for the regression of cloud-to-ground lightning location and peak current from time-domain waveforms of lightning-induced voltage measurements on overhead transmission lines is presented. A principal component analysis (PCA) procedure is applied for extracting significant features and decreasing the dimension of the input vector. Then, a shallow neural network is trained with the results of the PCA. The obtained results show that the proposed approach can be the base for a tool able to regress lighting location with an accuracy comparable to or even better than traditional methods [i.e., lightning location system (LLS)] and provide a peak current estimate more accurate than LLS and more actual and widespread than direct tower measurements (which are limited to a reduced number of recorded events in some specific regions). Such a tool would also have significant advantages in terms of costs, since it would not require a dedicated instrumentation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1217136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact