We investigate the modulation of turbulence caused by the presence of finite-size dispersed particles. Bluff (isotropic) spheres versus slender (anisotropic) fibres are considered to understand the influence of the shape of the objects on altering the carrier flow. While at a fixed mass fraction - but different Stokes number - both objects provide a similar bulk effect characterized by a large-scale energy depletion, a scale-by-scale analysis of the energy transfer reveals that the alteration of the whole spectrum is intrinsically different. For bluff objects, the classical energy cascade shrinks in its extension but is unaltered in the energy content and its typical features, while for slender ones we find an alternative energy flux which is essentially mediated by the fluid-solid coupling.
The effect of particle anisotropy on the modulation of turbulent flows
Olivieri S.;
2022-01-01
Abstract
We investigate the modulation of turbulence caused by the presence of finite-size dispersed particles. Bluff (isotropic) spheres versus slender (anisotropic) fibres are considered to understand the influence of the shape of the objects on altering the carrier flow. While at a fixed mass fraction - but different Stokes number - both objects provide a similar bulk effect characterized by a large-scale energy depletion, a scale-by-scale analysis of the energy transfer reveals that the alteration of the whole spectrum is intrinsically different. For bluff objects, the classical energy cascade shrinks in its extension but is unaltered in the energy content and its typical features, while for slender ones we find an alternative energy flux which is essentially mediated by the fluid-solid coupling.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.