The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.

Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO2 Nanocrystals

Barelli M.;
2023-01-01

Abstract

The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1178775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact