This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the "memory" of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.

Long-term “memory” of extraordinary climatic seasons in the hysteretic seepage of an unsaturated infinite slope

Diana Bianchi;Domenico Gallipoli;Rossella Bovolenta;Martino Leoni
2024-01-01

Abstract

This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the "memory" of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1174595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact