Adversarial machine learning manipulates datasets to mislead machine learning algorithm decisions. We propose a new approach able to detect adversarial attacks, based on eXplainable and Reliable AI. The results obtained show how canonical algorithms may have difficulty in identifying attacks, while the proposed approach is able to correctly identify different adversarial settings.

On The Detection Of Adversarial Attacks Through Reliable AI

Ivan Vaccari;Alberto Carlevaro;Enrico Cambiaso;Maurizio Mongelli
2022-01-01

Abstract

Adversarial machine learning manipulates datasets to mislead machine learning algorithm decisions. We propose a new approach able to detect adversarial attacks, based on eXplainable and Reliable AI. The results obtained show how canonical algorithms may have difficulty in identifying attacks, while the proposed approach is able to correctly identify different adversarial settings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1164115
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact