Online deep reinforcement learning training poses challenges due to its length and instability, despite the development of learning algorithms targeted to overcome these issues. Offline learning has emerged as a potential solution, but it reintroduces the issue of dataset production, which is resource-consuming and challenging even in simulation environments. This paper investigates efficient dataset creation for offline learning in the context of automated driving. Our proposed solution is a pipeline based on the CARLA simulator, which offers a wide variety in terms of car models, weather conditions, and environments. The pipeline aims to produce high-quality datasets for pre-training, training, and fine-tuning models, targeting improved training speed and reduced divergence. By leveraging CARLA's level of realism, we address the resource-intensive nature of dataset production, providing researchers and car manufacturers with a valuable tool for advancing the development of robust automated driving systems.
Building a Pipeline for Efficient Production of Synthetic Datasets for Improving RL in Automated Driving
Lazzaroni L.;Pighetti A.;Bellotti F.;Berta R.
2024-01-01
Abstract
Online deep reinforcement learning training poses challenges due to its length and instability, despite the development of learning algorithms targeted to overcome these issues. Offline learning has emerged as a potential solution, but it reintroduces the issue of dataset production, which is resource-consuming and challenging even in simulation environments. This paper investigates efficient dataset creation for offline learning in the context of automated driving. Our proposed solution is a pipeline based on the CARLA simulator, which offers a wide variety in terms of car models, weather conditions, and environments. The pipeline aims to produce high-quality datasets for pre-training, training, and fine-tuning models, targeting improved training speed and reduced divergence. By leveraging CARLA's level of realism, we address the resource-intensive nature of dataset production, providing researchers and car manufacturers with a valuable tool for advancing the development of robust automated driving systems.File | Dimensione | Formato | |
---|---|---|---|
SIE_2023_proc_072 1.pdf
accesso chiuso
Tipologia:
Documento in Pre-print
Dimensione
476.53 kB
Formato
Adobe PDF
|
476.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.