: A recent study by Ding et al. explores the integration of artificial intelligence (AI) in predicting dementia risk over a 10-year period using a multimodal approach. While revealing the potential of machine learning models in identifying high-risk individuals through neuropsychological testing, MRI imaging, and clinical risk factors, the imperative of dynamic frailty assessment emerges for accurate late-life dementia prediction. The commentary highlights challenges associated with AI models, including dimensionality and data standardization, emphasizing the critical need for a dynamic, comprehensive approach to reflect the evolving nature of dementia and improve predictive accuracy.

Rethinking Dementia Risk Prediction: A Critical Evaluation of a Multimodal Machine Learning Predictive Model

Ottaviani, Silvia;Monacelli, Fiammetta
2024-01-01

Abstract

: A recent study by Ding et al. explores the integration of artificial intelligence (AI) in predicting dementia risk over a 10-year period using a multimodal approach. While revealing the potential of machine learning models in identifying high-risk individuals through neuropsychological testing, MRI imaging, and clinical risk factors, the imperative of dynamic frailty assessment emerges for accurate late-life dementia prediction. The commentary highlights challenges associated with AI models, including dimensionality and data standardization, emphasizing the critical need for a dynamic, comprehensive approach to reflect the evolving nature of dementia and improve predictive accuracy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1164033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact