We study the theory of Weyl conformal gravity with matter degrees of freedom in a conformally invariant interaction. Specifically, we consider a triplet of scalar fields and SO(3) non-Abelian gauge fields, i.e. the Georgi-Glashow model conformally coupled to Weyl gravity. We show that the equations of motion admit solutions spontaneously breaking the conformal symmetry and the gauge symmetry, providing a mechanism for supplying a scale in the theory. The vacuum solution corresponds to anti-de Sitter spacetime, while localized soliton solutions correspond to magnetic monopoles in asymptotically anti-de Sitter spacetime. This mechanism strengthens the reasons for considering conformally invariant matter-gravity theory, which has shown promising indications concerning the problem of missing matter in galactic rotation curves.
Spontaneous breaking of conformal invariance in theories of conformally coupled matter and Weyl gravity
Fabbri, Luca;
2006-01-01
Abstract
We study the theory of Weyl conformal gravity with matter degrees of freedom in a conformally invariant interaction. Specifically, we consider a triplet of scalar fields and SO(3) non-Abelian gauge fields, i.e. the Georgi-Glashow model conformally coupled to Weyl gravity. We show that the equations of motion admit solutions spontaneously breaking the conformal symmetry and the gauge symmetry, providing a mechanism for supplying a scale in the theory. The vacuum solution corresponds to anti-de Sitter spacetime, while localized soliton solutions correspond to magnetic monopoles in asymptotically anti-de Sitter spacetime. This mechanism strengthens the reasons for considering conformally invariant matter-gravity theory, which has shown promising indications concerning the problem of missing matter in galactic rotation curves.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.