In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.

ELKO in polar form

Fabbri, Luca
2020-01-01

Abstract

In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1162135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact