In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.
ELKO in polar form
Fabbri, Luca
2020-01-01
Abstract
In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.