In hydrodynamics, for generic relaxations, the stress tensor and U(1) charge current two-point functions are not time-reversal covariant. This remains true even if the Martin-Kadanoff procedure happens to yield Onsager reciprocal correlators. We consider linearized relativistic hydrodynamics on Minkowski space in the presence of energy, U(1) charge, and momentum relaxation. We then show how one can find the minimal relaxed hydrodynamic framework that does yield two-point functions consistent with time-reversal covariance. We claim the same approach naturally applies to boost agnostic hydrodynamics and its limits (e.g., Carrollian, Galilean, and Lifshitz fluids).

Restoring time-reversal covariance in relaxed hydrodynamics

Amoretti A.;Brattan D. K.;Martinoia L.;Matthaiakakis I.
2023-01-01

Abstract

In hydrodynamics, for generic relaxations, the stress tensor and U(1) charge current two-point functions are not time-reversal covariant. This remains true even if the Martin-Kadanoff procedure happens to yield Onsager reciprocal correlators. We consider linearized relativistic hydrodynamics on Minkowski space in the presence of energy, U(1) charge, and momentum relaxation. We then show how one can find the minimal relaxed hydrodynamic framework that does yield two-point functions consistent with time-reversal covariance. We claim the same approach naturally applies to boost agnostic hydrodynamics and its limits (e.g., Carrollian, Galilean, and Lifshitz fluids).
File in questo prodotto:
File Dimensione Formato  
2304.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Pre-print
Dimensione 187.55 kB
Formato Adobe PDF
187.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1160736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact