The generator of a Gaussian quantum Markov semigroup on the algebra of bounded operator on a d-mode Fock space is represented in a generalized GKLS form with an operator G quadratic in creation and annihilation operators and Kraus operators L1,... ,Lm linear in creation and annihilation operators. Kraus operators, commutators |G,L-l| and iterated commutators |G, |G,L-l||, horizontal ellipsis up to the order 2d - m, as linear combinations of creation and annihilation operators determine a vector in DOUBLE-STRUCK CAPITAL C-2d. We show that a Gaussian quantum Markov semigroup is irreducible if such vectors generate DOUBLE-STRUCK CAPITAL C-2d, under the technical condition that the domains of G and the number operator coincide. Conversely, we show that this condition is also necessary if the linear space generated by Kraus operators and their iterated commutator with G is fully non-commutative.

On irreducibility of Gaussian quantum Markov semigroups

Fagnola, F;Poletti, D
2022-01-01

Abstract

The generator of a Gaussian quantum Markov semigroup on the algebra of bounded operator on a d-mode Fock space is represented in a generalized GKLS form with an operator G quadratic in creation and annihilation operators and Kraus operators L1,... ,Lm linear in creation and annihilation operators. Kraus operators, commutators |G,L-l| and iterated commutators |G, |G,L-l||, horizontal ellipsis up to the order 2d - m, as linear combinations of creation and annihilation operators determine a vector in DOUBLE-STRUCK CAPITAL C-2d. We show that a Gaussian quantum Markov semigroup is irreducible if such vectors generate DOUBLE-STRUCK CAPITAL C-2d, under the technical condition that the domains of G and the number operator coincide. Conversely, we show that this condition is also necessary if the linear space generated by Kraus operators and their iterated commutator with G is fully non-commutative.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1160439
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact