The seismic evaluation of masonry buildings in aggregate, largely diffused within the existing Italian and European building stock, represents a difficult and open task that has not been exhaustively investigated so far. The study proposes a procedure aimed at evaluating the potential impact of the combination of local mechanisms and site-amplification in terms of fragility curves on an existing unreinforced masonry (URM) aggregate which is made of five adjacent structural units mutually interacting with each other during seismic sequences. The case study is inspired by built heritage of the historic centre of Visso struck by the Central Italy 2016/2017 earthquakes. The in-plane (IP) response of URM buildings was simulated through nonlinear dynamic analyses performed on a 3D equivalent frame model of the structure, whereas out-of-plane (OOP) mechanisms were analysed by adopting the rigid-block assumption but assuming, as seismic input, the floor accelerations derived from the post-processing of data derived from the global 3D model. An innovative procedure considering the pounding effect to the global response of the building is also presented. Two soil conditions were assumed with (freefield) and without (bedrock) site amplification. The results showed that site effects strongly affected the seismic vulnerability of the aggregate, also altering the combination between IP and OOP mechanisms. In fact, for bedrock condition, especially for medium-high damage levels, local mechanisms were prevailing with respect to the IP response. Conversely, for freefield condition, IP mainly governed the overall behaviour for all the damage levels, consistently with the field evidence.

Fragility curves of masonry buildings in aggregate accounting for local mechanisms and site effects

Angiolilli, M;Brunelli, A;Cattari, S
2023-01-01

Abstract

The seismic evaluation of masonry buildings in aggregate, largely diffused within the existing Italian and European building stock, represents a difficult and open task that has not been exhaustively investigated so far. The study proposes a procedure aimed at evaluating the potential impact of the combination of local mechanisms and site-amplification in terms of fragility curves on an existing unreinforced masonry (URM) aggregate which is made of five adjacent structural units mutually interacting with each other during seismic sequences. The case study is inspired by built heritage of the historic centre of Visso struck by the Central Italy 2016/2017 earthquakes. The in-plane (IP) response of URM buildings was simulated through nonlinear dynamic analyses performed on a 3D equivalent frame model of the structure, whereas out-of-plane (OOP) mechanisms were analysed by adopting the rigid-block assumption but assuming, as seismic input, the floor accelerations derived from the post-processing of data derived from the global 3D model. An innovative procedure considering the pounding effect to the global response of the building is also presented. Two soil conditions were assumed with (freefield) and without (bedrock) site amplification. The results showed that site effects strongly affected the seismic vulnerability of the aggregate, also altering the combination between IP and OOP mechanisms. In fact, for bedrock condition, especially for medium-high damage levels, local mechanisms were prevailing with respect to the IP response. Conversely, for freefield condition, IP mainly governed the overall behaviour for all the damage levels, consistently with the field evidence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1156765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact