We discuss the properties of signal strength and integrated intensity in two-photon excitation confocal microscopy and image scanning microscopy. The resolution, optical sectioning and background rejection are all improved over nonconfocal two-photon microscopy. Replacing the pinhole of confocal two-photon microscopy with a detector array increases the peak intensity of the point spread function. The outer pixels of a detector array give signals from defocused regions, and thus the processing of these, such as through subtraction, can further improve optical sectioning and background rejection.
Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy
Bianchini, P;Diaspro, A
2023-01-01
Abstract
We discuss the properties of signal strength and integrated intensity in two-photon excitation confocal microscopy and image scanning microscopy. The resolution, optical sectioning and background rejection are all improved over nonconfocal two-photon microscopy. Replacing the pinhole of confocal two-photon microscopy with a detector array increases the peak intensity of the point spread function. The outer pixels of a detector array give signals from defocused regions, and thus the processing of these, such as through subtraction, can further improve optical sectioning and background rejection.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.