Evidence supports the pathophysiological relevance of crosstalk between the neurotransmitters Glycine and Glutamate and their close interactions; some reports even support the possibility of Glycine–Glutamate cotransmission in central nervous system (CNS) areas, including the hippocampus. Functional studies with isolated nerve terminals (synaptosomes) permit us to study transporter-mediated interactions between neurotransmitters that lead to the regulation of transmitter release. Our main aims here were: (i) to investigate release-regulating, transporter-mediated interactions between Glycine and Glutamate in hippocampal nerve terminals and (ii) to determine the coexistence of transporters for Glycine and Glutamate in these terminals. Purified synaptosomes, analyzed at the ultrastructural level via electron microscopy, were used as the experimental model. Mouse hippocampal synaptosomes were prelabeled with [3H]D-Aspartate or [3H]Glycine; the release of radiolabeled tracers was monitored with the superfusion technique. The main findings were that (i) exogenous Glycine stimulated [3H]D-Aspartate release, partly by activation of GlyT1 and in part, unusually, through GlyT2 transporters and that (ii) D-Aspartate stimulated [3H]glycine release by a process that was sensitive to Glutamate transporter blockers. Based on the features of the experimental model used, it is suggested that functional transporters for Glutamate and Glycine coexist in a small subset of hippocampal nerve terminals, a condition that may also be compatible with cotransmission; glycinergic and glutamatergic transporters exhibit different functions and mediate interactions between the neurotransmitters. It is hoped that increased information on Glutamate–Glycine interactions in different areas, including the hippocampus, will contribute to a better knowledge of drugs acting at “glycinergic” targets, currently under study in relation with different CNS pathologies.

Interactions between Glycine and Glutamate through Activation of Their Transporters in Hippocampal Nerve Terminals

Cortese, Katia;Gagliani, Maria Cristina;Raiteri, Luca
2023-01-01

Abstract

Evidence supports the pathophysiological relevance of crosstalk between the neurotransmitters Glycine and Glutamate and their close interactions; some reports even support the possibility of Glycine–Glutamate cotransmission in central nervous system (CNS) areas, including the hippocampus. Functional studies with isolated nerve terminals (synaptosomes) permit us to study transporter-mediated interactions between neurotransmitters that lead to the regulation of transmitter release. Our main aims here were: (i) to investigate release-regulating, transporter-mediated interactions between Glycine and Glutamate in hippocampal nerve terminals and (ii) to determine the coexistence of transporters for Glycine and Glutamate in these terminals. Purified synaptosomes, analyzed at the ultrastructural level via electron microscopy, were used as the experimental model. Mouse hippocampal synaptosomes were prelabeled with [3H]D-Aspartate or [3H]Glycine; the release of radiolabeled tracers was monitored with the superfusion technique. The main findings were that (i) exogenous Glycine stimulated [3H]D-Aspartate release, partly by activation of GlyT1 and in part, unusually, through GlyT2 transporters and that (ii) D-Aspartate stimulated [3H]glycine release by a process that was sensitive to Glutamate transporter blockers. Based on the features of the experimental model used, it is suggested that functional transporters for Glutamate and Glycine coexist in a small subset of hippocampal nerve terminals, a condition that may also be compatible with cotransmission; glycinergic and glutamatergic transporters exhibit different functions and mediate interactions between the neurotransmitters. It is hoped that increased information on Glutamate–Glycine interactions in different areas, including the hippocampus, will contribute to a better knowledge of drugs acting at “glycinergic” targets, currently under study in relation with different CNS pathologies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1155495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact