Dynamic positioning capability (DPCap) assessment is essential during the preliminary investigation of the positioning ability of a newly designed dynamic positioning system (DPS). Operational safety is always the first consideration in the design and operation of a new DPS. To be able to plan a safe and efficient operation, it is important to know the maximum environmental conditions that the DP vessel can withstand. The main objective of this article is to present a developed tool capable of conducting the DPCap analysis for offshore supply vessels based on the DNVGL methodology. The article describes the background studies, methodology, and mechanism associated with the formulation and development of the tool. The optimization of the design variables for the station-keeping criteria targets the highest capability at the lowest possible energy expenditure. Finally, the results are presented in the form of standard capability polar plots to show the application of the computational assessment procedure. The accuracy and reliability of the DPCap tool are validated by comparing with the results of the commercial one for the same case study ship at multiple simulation cases.

Assessment of Station Keeping Capability for Dynamically Positioned Offshore Supply Vessel

Ahmed G. Elkafas
2022-01-01

Abstract

Dynamic positioning capability (DPCap) assessment is essential during the preliminary investigation of the positioning ability of a newly designed dynamic positioning system (DPS). Operational safety is always the first consideration in the design and operation of a new DPS. To be able to plan a safe and efficient operation, it is important to know the maximum environmental conditions that the DP vessel can withstand. The main objective of this article is to present a developed tool capable of conducting the DPCap analysis for offshore supply vessels based on the DNVGL methodology. The article describes the background studies, methodology, and mechanism associated with the formulation and development of the tool. The optimization of the design variables for the station-keeping criteria targets the highest capability at the lowest possible energy expenditure. Finally, the results are presented in the form of standard capability polar plots to show the application of the computational assessment procedure. The accuracy and reliability of the DPCap tool are validated by comparing with the results of the commercial one for the same case study ship at multiple simulation cases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1151297
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact