Classical molecular dynamics (MD) simulations on realistic colloidal quantum dot (QD) systems are often hampered by missing force field (FF) parameters for an accurate description of the QD-ligand interface. However, such calculations are of major interest, specifically for studying the surface chemistry of colloidal nanocrystals. In this work, we have utilized a previously published stochastic optimization algorithm to obtain FF parameters for InP and InAs QDs capped by Cl, amine, carboxylate, and thiolate ligands. Our FF parameters are interfaced with well-established FFs for organic molecules, allowing for the simulation of InP and InAs QDs with a broad range of organic ligands in explicit apolar solvents. The quality of our FF parameters was assessed by comparing properties of the classical MD simulations with ab initio MD simulations and experimental and theoretical values from the literature.
Classical Force Field Parameters for InP and InAs Quantum Dots with Various Surface Passivations
Pascazio, Roberta;
2023-01-01
Abstract
Classical molecular dynamics (MD) simulations on realistic colloidal quantum dot (QD) systems are often hampered by missing force field (FF) parameters for an accurate description of the QD-ligand interface. However, such calculations are of major interest, specifically for studying the surface chemistry of colloidal nanocrystals. In this work, we have utilized a previously published stochastic optimization algorithm to obtain FF parameters for InP and InAs QDs capped by Cl, amine, carboxylate, and thiolate ligands. Our FF parameters are interfaced with well-established FFs for organic molecules, allowing for the simulation of InP and InAs QDs with a broad range of organic ligands in explicit apolar solvents. The quality of our FF parameters was assessed by comparing properties of the classical MD simulations with ab initio MD simulations and experimental and theoretical values from the literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.