The effect of aging on cadmium (Cd) bioavailability and bioaccessibility was investigated in naturally aged field soil within a contaminated site. The results, which are based on a comparison of investigations carried out in 2018 and 2022 on the same soil samples, provide a realistic evaluation of the variation in Cd chemical forms due to long-term aging. The data obtained show a significant reduction (from approximately 30% to 60%) in the mobile and bioavailable forms of cadmium, while the total quantity in soil did not change significantly. The effect of aging on the bioavailable fractions is also reflected in the reduction in the amount of the metal absorbed by plants. On the one hand, this indicates a reduction in the potential contamination of the food chain, while on the other, it highlights the limitations of the use of phytoextraction as a clean-up technology in this specific site. In the case under study, it should also be noted that there was no decrease in cadmium bioaccessibility over time, which remained very high even after four years of cadmium aging in the soil, which was about 60% of the total content in the most contaminated soil samples. This highlights the potential health risks related to the incidental ingestion of Cd-contaminated soil, which could become the main exposure route in the case of the final use of the site as a park or public green area.
Effect of Soil Aging on Cadmium Bioavailability and Bioaccessibility at a Contaminated Site
Marco Vocciante;
2023-01-01
Abstract
The effect of aging on cadmium (Cd) bioavailability and bioaccessibility was investigated in naturally aged field soil within a contaminated site. The results, which are based on a comparison of investigations carried out in 2018 and 2022 on the same soil samples, provide a realistic evaluation of the variation in Cd chemical forms due to long-term aging. The data obtained show a significant reduction (from approximately 30% to 60%) in the mobile and bioavailable forms of cadmium, while the total quantity in soil did not change significantly. The effect of aging on the bioavailable fractions is also reflected in the reduction in the amount of the metal absorbed by plants. On the one hand, this indicates a reduction in the potential contamination of the food chain, while on the other, it highlights the limitations of the use of phytoextraction as a clean-up technology in this specific site. In the case under study, it should also be noted that there was no decrease in cadmium bioaccessibility over time, which remained very high even after four years of cadmium aging in the soil, which was about 60% of the total content in the most contaminated soil samples. This highlights the potential health risks related to the incidental ingestion of Cd-contaminated soil, which could become the main exposure route in the case of the final use of the site as a park or public green area.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.